

0040-4039(94)E0128-K

"Metallo-Fries" Rearrangements of 2-lithio-6-nitrophenol derivatives

Ian R. Hardcastle and Peter Quayle*

Department of Chemistry The Victoria University of Manchester Manchester M13 9PL, UK

Abstract: 2-Bromo-6-nitrophenyl trialkylsilylethers, esters, carbamates and carbonates undergo "metallo-Fries" rearrangements to the C-silyl compounds, ketones, amides and esters respectively.

"Metallo-Fries" rearrangements have been observed with a number of classes of compounds, notably trialkylsilyl ethers, esters and carbamates providing the C-trialkylsilyl compounds, ketones and amides respectively^{1,2,3}. The reactions occur when the electrophilic centre acts as a bridge to transfer the negative charge from the aromatic carbon to the phenolic oxygen. In the case of trialkylsilyl ethers and esters, the reaction has been shown to proceed via an intramolecular mechanism^{1,2}. We now report the analogous reactions of derivatives of 2-bromo-4-methyl-6-nitrophenol, and the rearrangement of the benzyl carbonate derivative to the corresponding benzyl ester in moderate yield.

A variety of trialkylsilyl ethers (Table, substrates (1)-(4)) were prepared from 2-bromo-4-methyl-6nitrophenol under standard conditions⁴. Upon halogen-metal exchange (PhLi, THF, -78°C) an instantaneous reaction occurred giving a deep red solution. On work-up the corresponding 2-trialkylsilyl-6-nitrophenols were obtained in moderate to good yields (Table, entries 1-4). In contrast, when the supposed dianion formed from 2-bromo-4-methyl-6-nitrophenol (PhLi, 2 eq.; THF; -78°C) was quenched with TMSCl, a complex mixture of products resulted.

2-Lithioaryl carbamates are stable at -78° C but are observed to rearrange on warming³. Upon halogenmetal exchange at -78° C the carbamate⁵ (5) rapidly rearranged to give the amide (6) in 49% yield (**Table**, entry 5). Similarly reaction of the isopropylester (7) with phenyllithium (1 eq.; THF; -78° C) resulted in the isolation of an inseparable mixture of the ketone (8) and the carbinol (9), formed from the addition of phenyllithium to the rearranged ketone (8), (**Table**, entry 6). Reduction of the temperature to -100° C had no significant effect on the product distribution. When the reaction was attempted using 'butyllihium (1 eq.; THF; -78° C) the ketone (8) was isolated in low yield.

To our knowledge there have been no reports of similar reactions of carbonates, hence the readily available⁶ benzylcarbonate (10) was subjected to our standard rearrangement conditions (PhLi, leq; THF; -78°C), resulting in the isolation of the benzyl ester (11) in 54% yield (Table, entry 7).

Although detailed kinetic studies have not been undertaken, the o-nitro group has a dramatic effect upon the rate on this rearrangement reaction, presumably by stabilisation of the resulting phenolate anion⁷. This is most

	$O_2 N \qquad \qquad OE \\ O_2 N \qquad \qquad OH \\ CH_3 \qquad OH $	
Entry / Substrate	E	Product Yield (%) ^a
1; (1)	-SiMc3	72
2; (2)	-Si(CH ₃) ₂ ^t Bu	53
3; (3)	-Si ⁱ Pr ₃	84
4; (4)	-SiPh2 ^t Bu	59
5; (5)	-CONEt2	(6); 49
6; (7)	-COCH(CH ₃) ₂	(8)+(9) ((3:2)); 65
7; (10)	-CO ₂ Bn	(11); 54
a: isolated yiel	ds By-product $(9) = Ph Ar$	

Table: O-C Rearrangements of Substituted o-Nitrophenols

evident in the case of the 2-lithioarylcarbamate species which is stable at low temperature in the absence of the nitro group.

In conclusion, we have demonstrated that "metallo-Fries" rearrangements of a wide variety of 2-lithio-6nitrophenol derivatives occur rapidly at low temperature^{8,9} affording new synthetic routes to highly functionalised aromatic compounds.

References and Notes

- (a) Billedeau, R. J., Sibi, M. P., Snieckus, V. J., Tetrahedron Letters, 1983, 24, 4515; (b) Simchen, G. and Pfetschinger, J., Angew. Chem., Int. Ed. Engl., 1976, 15, 428; (c) Habich, D., Effenberger, F., Synthesis, 1979, 841.
- 2. Miller, J. A., J. Org. Chem., 1987, 52, 322.
- (a) Sibi, M. P., Snieckus, V. J., J. Org. Chem., 1983, 48, 1935; (b) Skowronaska-Ptasinska, M., Verboam, W., and Reinholt, D. N., J. Org. Chem., 1985, 50, 2690.
- Prepared from 2-bromo-4-methyl-6-nitrophenol: substrate:- (1) HMDS, reflux, 2 hours; substrates (2) to (4):- (i) NaH; THF, (ii) R'R₂SiCl.
- 5. Prepared from 2-bromo-4-methyl-6-nitrophenol: (i) NaH; THF, (ii) Et₂NCOCl, reflux; 22%.
- 6. Prepared from 2-bromo-4-methyl-6-nitrophenol: (i) NaH; THF, (ii) PhCH₂COCl; 90%.
- 7. pKa values for phenol and 2-nitrophenol are 9.89 and 7.17 respectively.
- 8. All new compounds have analytical and spectral (¹H nmr, ir, ms) data consistent with the indicated structures.
- 9. IRH thanks The Victoria University of Manchester for provision of a Samuel Gratrix Postgraduate Studentship.

(Received in UK 12 July 1993; revised 10 January 1994; accepted 14 January 1994)